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Abstract 

In this paper we introduce a notion of vertex Lie algebra U, in a way a “half” of vertex 
algebra structure sufficient to construct the corresponding local Lie algebra W(U) and a vertex 
algebra ‘f-(U). We show that we may consider U as a subset U C 7 ‘(U) which generates 
Y ‘(I/) and that the vertex Lie algebra structure on U is induced by the vertex algebra structure 
on I ‘(U ). Moreover, for any vertex algebra V a given homomorphism ZJ + V of vertex Lie 
algebras extends uniquely to a homomorphism V(U) ---* V of vertex algebras. In the second part 
of paper we study under what conditions on structure constants one can construct a vertex Lie 
algebra U by starting with a given commutator formula for fields. @ 1999 Elsevier Science 
B.V. All rights reserved. 

1991 Mrrth. Subj. Cl~~ss.: l7B69 

1. Introduction 

One way of seeing a vertex algebra V is as a vector space with infinitely many bi- 
linear multiplications u,,v, n E Z, which correspond to “normal order products” u(z),v(z) 
of fields U(Z) and v(z) associated to vectors u and v. For two fields there is a formula 
in which the commutator is expressed in terms of products u(z),v(z) only for n 20. 
So any vector space U c V closed for “positive” multiplications will look like some 
kind of Lie algebra. 

In this paper we define a vertex Lie algebra as a vector space U given infinitely many 
bilinear multiplications unv, RE N, satisfying a Jacobi identity and a skew symmetry 
in terms of given derivation D. In particular, any vertex algebra is a vertex Lie algebra 
if we forget the multiplications other than for n 20. This structure is sufficient to 
construct a Lie algebra Y(U) generated by vectors u,,, UE U, y1 E 77, such that the 
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commutator formula for fields with U(Z) = CnEE U,Z-“-’ defines the commutator in 
_Y( U). This Lie algebra has the obvious decomposition _Y( U) = .K( U) $ Y+(U) and 
the induction by a trivial A?+(U)-module gives a generalized Verma _9?( U)-module 

“f(U) = “iq=qU)) @‘//(Y+(U)) c ” “4qsp-(U>), 

where Q stands for the universal enveloping algebra of a given Lie algebra. 
We show that Y(U) is a vertex algebra and that we may consider U as a subset 

U c f(U) which generates Y’(U). So an “abstract” U turns to be as in the “concrete” 
motivating example at the beginning. Moreover, for any vertex algebra V a given 
homomorphism U 4 V of vertex Lie algebras extends uniquely to a homomorphism 
Y(U) + V of vertex algebras. Because of this universal property we call Y(U) the 
universal enveloping vertex algebra of U. These constructions are modeled after and 
apply to the well known examples of vertex (super)algebras associated to affine Lie 
algebras, Virasoro algebra and Neveu-Schwarz algebra. 

In the second part of this paper we study under what conditions on structure con- 
stants one can construct a vertex algebra by starting with a given commutator formula 
for fields, or equivalently, by starting with a given singular part of operator product 
expansion for fields. In the case of a commutator formula closed for a set S of quasi- 
primary fields we give explicit necessary and sufficient conditions for the existence of 
universal vertex algebra Y( (S) ) generated by S. 

This work rests on the inspiring results of Hai-sheng Li in [ 121 and in a way a 
complementary theorem on generating fields in [5, 141, but it goes without saying that 
many ideas used here stem from [ 1,2,6-81, to mention just a few. Li’s point of view on 
generating fields gives a natural framework for studying modules and it was tempting 
to see how some of his Lie-theoretic arguments could be extended to a more general 
setting. The key technical point is the observation that a direct proof that the local 
algebra _%‘(I’) of vertex algebra V is a Lie algebra involves just a “positive half” 
of both the Jacobi identity and the skew symmetry, i.e., to be more precise, involves 
only the principal part of the formal Laurent series which appear in these relations. 
In a similar way only a “positive half” of the commutator formula implies the “positive 
half” of the Jacobi identity. Some of these arguments are essentially a simpler copy 
of Li’s arguments for vertex (super)algebras and work just the same in the vertex 
superalgebra case. 

2. Generating fields for vertex algebras 

For a &-graded vector space W = W” + W’ we write /uI E&, a degree of u, only 
for homogeneous elements: IuI= 0 for an even element u E W” and IuI= 1 for an 
odd element u E W' . For any two &-homogeneous elements u and v we define E,~,~ = 
(_l)‘“ll’l EZ. 

By following [ 121, a vertex superalgebra V is a Zz-graded vector space V = V” + V’ 
equipped with a specified vector 1 called the vacuum vector, a linear operator D on 
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V called the derivation and a linear map 

V + (End V)[[z-‘,z]], 1: H Y(v,z) = c zl,z-n-’ 
WEZ 

satisfying the following conditions for u, v E V: 

u,v = 0 for n sufficiently large; 

[D, Y(U,Z)] = Y(DU,Z) = ; Y(u,z); 

Y(l,z)=idv (the identity operator on P’); 

Y(u,z)l E (End V)[[z]] and hnin Y(u,z)l = U. 

For &-homogeneous elements U, v E V the Jacobi identity holds: 

-I . Zl -z2 
hp ( > z2 -zi 

ZO Y(u,z,)Y(v,z2) - c,,,z,~‘~ - 
20 ( > 

Y(v,z2)Y(w) 
-zo 

zz ;'r) 

( 1 

5 Y( Y(u,zo)v,z2). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Finally, for any Z2-homogeneous u, v E V and n E Z we assume 

I%Vl = /uI + 10 (2.6) 

(i.e., U,,V is homogeneous and )u,v\ = 1~) + Iv\). 
Sometimes we will emphasize that Y(u,z) is pertinent to a vertex superalgebra V 

by writing Yv(u,z). 
In the definition of vertex superalgebra, VSA for short, condition (2.4) can be equiv- 

alently replaced by the condition Y(u,z)l = eZDu for all u E I’, and both are called the 
creation property. In a way the creation property is a special case of the skew symmetry 

Y(u,z)v = cL,.,.eZDY(v, -z)u 

which holds for all homogeneous u, VE V. 
Note that in the case when V = V”, i.e., when all vectors are even, all &-grading 

conditions become trivial and we speak of a vertex algebra, VA for short. In general, 
for a .Zz-graded vector space W the vector spaces 

End W =(End W)’ @ (End W)‘, 

(End W)[[z-‘,z]] =(End W)“[[z-‘,z]] CE (End W)‘[[zC’,z]] 

are Z2-graded as well and our assumption (2.6) implies that for a homogeneous element 
u E V the operators un are homogeneous for all n E Z, that Y(u,z) is homogeneous and 

Iu/ = I& = I Y(v>l. 
This together with (2.4), (2.3) and (2.2) implies that 1~ I’ is even and that DEEPS V 
is even. On the other hand, I E V is even together with (2.1) (2.4) and (2.5) implies 
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(2.2) for D defined by Du=u--21; relation (2.3) follows as well. For this reason 
we define a homomorphism cp : V + U of two vertex superalgebras as a Zz-grading 
preserving linear map 40 such that 

V(W) = (cp(~))~(cp(r)) 

for all U, VE V, n E Z; as a consequence we have relations 

q(l)= 1, qD = Dep. 

For a subset U c V we denote by (U) a vertex superalgebra generated by U, i.e., 
the smallest vertex superalgebra containing the set U. 

A module M for a vertex superalgebra V is a Zz-graded vector space A4 = M” + A4 ’ 
equipped with an even linear operator DE (End M)’ and a linear map 

V + (EndM)[[z-‘,z]], v H YM(V,Z) = c v,z-n-’ 
nEL 

satisfying the following conditions for u, v E V and w g M: 

U,W = 0 for nEL sufficiently large; 

[D, Ydu,z)l = YdDu,z) = $‘A&.z); 

Y~(l,z) = idM (the identity operator on A4). 

For Zz-homogeneous elements U, v E V the Jacobi identity holds: 

-I Zl -z2 
6- ( 1 z2 --I 

ZO Y&4(U,Z,)YM(V,Z2) - E,,,Z$6 ~ 
( ) 

yM(~,z2)yM(kzl) 
zo -zo 

Zl -zo 
=z,'d ~ 

( ) 
yM(y(~,zo)t',~2). 

ZZ 
(2.10) 

(2.7) 

(2.8) 

(2.9) 

Finally, for any Z2-homogeneous u E V, w EM and n E Z we assume 

I%WI = IUI + Iwl (2.11) 

(i.e., U,W is homogeneous and lu,,wl = Iu/ + iw~l). 
Clearly, V is a V-module with Yv(u,z)= Y(u,z), and, as before, for a V-module M 

we have 

l~l= I&l = IYM(U,Z)l. 

Let A4 be a V-module and U, VE V homogeneous elements. Set u(z) = Y~(u,z) and 
v(z) = Y~(v,z). As a consequence of the definition of V-module M we have the normal 
order product formula and the locality: The normal order product formula states that 
the field Y~(u,v,z) equals 

u(z),u(z) = Res,, ((zt - z)“u(zt )v(z) - (- 1) lu(z)ll+)~(-z + ZI )“v(z)U(z,)). (2.12) 
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The locality property states that for some N = N(u, v) E N 

(zi -z#U(z,)u(zZ)=(--) ‘u(z)llU(z)‘(z, - Z#U(Z&(Z, ). (2.13) 

In the case when formal Laurent series u(z) and v(z) satisfy relation (2.13) for some 
N = N(u(z), V(Z)) E N, we say that u(z) and v(z) are local to each other. 

Hai-sheng Li proved [12, Proposition 2.2.41 that in the definition of vertex super- 
algebra the Jacobi identity (2.5) can be equivalently substituted by the locality property 
(2.13). 

Let M be a &-graded vector space M = MO + M’ equipped with an even linear 
operator DE (EndM)‘. Following [ 121 define a vertex operator on M as a homogeneous 
formal Laurent series u(z) = CnEL II,Z-“-’ in (EndM)[[z-’ ,z]] such that the property 
(2.7) holds for all IVE W, that u(z) is local with itself (i.e., that (2.13) holds for 
u(z) = u(z)) and that 

d 
[D, u(z)] = -u(z). 

dz 
(2.14) 

We shall also say that a linear combination of vertex operators on M is a vertex 
operator on M. 

It is clear that giving a map Y(. ,z) is equivalent to giving infinitely many bilinear 
multiplications u,,u, n EH. Let F(M) be a space of formal Laurent series u(z) in 
(EndM)[[z-‘,z]] such that the property (2.7) holds for all IVE W. Then F(M) is 
Z’z-graded and on F(M) bilinear multiplications u(z),v(z), IZE L, given by (2.12) 
are well defined. Moreover, Hai-sheng Li proved the following theorem [12, Corol- 
lary 3.2.11, Theorem 3.2.101: 

Theorem 2.1. Let M be uny Zz-graded vector space equipped with an even lineur 
operator D and let U be any set of mutually local homogeneous vertex operators 
on M. Let (U) be the subspace of F(M) generated by U and I(z) = idM under the 
uertex operator multiplication (2.12). Then (U) is a vertex superalgebra with the 
vacuum vector 1= I(z) and the derivation D = d/dz. Moreover, M is a (U)-module. 

Clearly this theorem implies that for a vertex superalgebra V the set of fields 

{Y(u,z)luEY] . IS a vertex superalgebra, and by construction it is clear that u H 
Y(u,z) is an isomorphism. Because of this isomorphism we shall sometimes say that 
for a subset U c V the vertex superalgebra (U) c V is generated by the set of fields 

{Y(u,z) I UE u>. 
For the following theorem see [5,8,13,17]. The theorem was proved in [14] for 

graded vertex algebras, the results in [ 121 allow us to extend the proof to the vertex 
superalgebra case: 

Theorem 2.2. Let V be a Zz-graded vector space V = V” + V’ equipped with an euen 
linear operator DE(E~~ V)’ and an even vector 1 such that Dl = 0. Let U be a 
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Zz-graded subspace of V given a linear map 

Y : U + (End V)[[z,z-‘I], u H Y(u,z) = c u,z-n--l 
nEZ 

such that {Y(u,z) / UEU’U U’} is a set of mutually local vertex operators on V 
satisfying the following two conditions: 

Y(u,z)l E(End V)[[z]] and !FO Y(u,z)l = u; (2.15) 

V = span{uL:) . . . U'k'lIkEN, ?ZiEZ, no GE I/O u U'}. (2.16) 

Then Y extends uniquely into a vertex superalgebra with the vacuum vector 1 and 
the derivation D. 

Proof. Let W be the Zz-graded space of all vertex operators a(z) on V such that a(z) 
and Y(u,z) are mutually local for each UE U” U U’ and that a(z)1 is a power series 
in z. Define a linear map 

$:W-v, a(z) H a-1 1. 

Note that our assumptions imply Y(u,z)E W for all UE U. Hence by (2.15) 

Uc~(W)cV. 

Also note that 4 preserves the Zz-grading and that c$( W) c V is a &-graded subspace. 
Step 1: qb is injective. Assume that a(z) E W is homogeneous and a-1 1 = 0. Since 

a(z)1 is a power series in z, (2.14) and Dl = 0 imply 

a(z)1 = eZDu_l 1 = 0. (2.17) 

Let X = {v E V 1 a(z)v = 0} and let VEX, u E U” U U’. Then there exists NE N such 
that 

(zl -z*)Na(z1)Y(u,z2)v=(-l) ‘+“qZt - Z~)~Y(u,Z~)u(z,)v= 0. 

Hence a(zl)u,u=O and u,X cX. Since (2.17) implies VEX, it follows from (2.16) 
that X = V. Hence a(z) = 0 and C#J is injective. 

Step 2: Set X = C#J( W). Since C$ is injective we can define 

Y :X + (End V)[[z,z-’ II by Y(v,z)=F’(v) 

for VEX. By (2.15) the two meanings of Y(u,z) for UEU denote the same series. We 
claim that X=&W) = V, i.e., we have well dejined vertex operators Y(v,z) for all 
VE v. 

For nE Z and homogeneous elements UE U, VEX, define Y(u,v,z) by using the 
product (2.12): 

Y(%lu,z) = (Y(u,z)),(Y(u,z)). 
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Since Y(u,z) and Y(o,z) are in FV, it follows from [12, Lemmas 3.1.4, 3.1.8, Propo- 
sition 3.2.71 that Y(u,v,z) is a vertex operator on V. Again by [12, Propostion 3.2.71 
vertex operators Y(u,v,z) and Y(w,z) are mutually local for each WE U” U U’. It fol- 
lows from (2.12) that Y(u,v,z)l is a power series in z. Hence Y(u,u,z)~ W. It follows 
from (2.12) (cf. [12, (3.1.9)]) that 

Hence u E U, c EX, n E L implies 

ll,aEX. (2.18) 

Since idvzOE W and coeff,o(idvz’)l = 1, we have 

1EX (2.19) 

and Y(l,z) = idr, z” = id”. Now (2.16), (2.18), (2.19) imply X = V, i.e., we have well 
defined vertex operators Y( u,z) for all u E V. 

Step 3: Y(u, z) and Y(u,z) ure mutuully locd for ull puirs u, 2’ E V. Fix a homoge- 
neous element v(‘)E V and set 

X= span{uE V 1 Y(v,z) and Y(o(‘),z) and mutually local}. 

Clearly {l} U U c X. For IZ E Z and homogeneous elements u E U, v EX by definition 

Y(&I&Z) =(Y(u,z)),(Y(%z)), so [12, Proposition 3.2.71 implies that u,,v~X. Hence 
(2.16) again implies X = V as required. 

We have showed that V satisfies the conditions of [12, Proposition 2.2.41, so V is 
a vertex superalgebra. 0 

3. Vertex Lie algebras 

Let V be a vertex superalgebra. By taking Res, Resz, zz of the Jacobi identity for 
V or the Jacobi identity for a V-module M, that is the coefficients of ~0”~ ‘z; ’ , we 
get the normal order product formula (2.12). These relations are the components of 
associator formula obtained by taking the residue Res,, of the Jacobi identity: 
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By taking the residue Res, of the Jacobi identity we get the commutator formula 

(3.1) 

We can write these identities for components II, and II,, of Y(u,z) and Y(v,z): 

In general, if we take Res,,ResZ, Res,, z$z;Iz; of the Jacobi identity applied to a 
vector w, that is the coefficients of z~~~‘z~“-‘z~~-‘, we get for components of vertex 
operators the identities 

g(-lji (r) (hn+k--i(u,+iw) - E,,,(--l)kV,+k-i(U,+iW)) 

_ 

(3.2) 

These relations hold for all k,m,n E Z, but it should be noticed that for k,m,n E N 
these relations involve only indices in N. In a way the purpose of this paper is to 
study the consequences of this “half” of the Jacobi identity. 

Let A and B be two formal Laurent series (in possibly several variables zo,zt , . . .). 
We shall write A cz B if the principal parts of A and B are equal. For example, 
A(zo,z~,z~) ~B(zo,z~,z~) means that the coefficients of z~~-‘z~“-‘z~“-’ in A equal 
the coefficients in B for all k,m,n E N. In particular, the set of relations (3.2) for all 
k,m,n E N is equivalent to the “half Jacobi identity” (3.6) written below. In a similar 
way we shall speak of the half commutator formula or the half associator formula. 
From the way they were obtained, it is clear they are a subset of the half Jacobi 
identity viewed by components. 

With the above notation we define a vertex Lie superalgebra U as a &-graded 
vector space U = U” + U’ equipped with an even linear operator D on U called the 
derivation and a linear map 

U +z-‘(End U)[[z-‘I], u H Y(v,z) = c u,Z-n-’ 
tl>O 

satisfying the following conditions for U, v E U: 

24,~ = 0 for n sufficiently large; 

[D, Y(u,z)] = Y(Du,z) = ; Y(u,z). 

(3.3) 

(3.4) 
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For Zz-homogeneous elements u, v E V the half skew symmetry holds: 

Y(u,z)v r” aU.re’DY(v, -z)u. 

For &-homogeneous elements U, u E V the half Jacobi identity holds: 

261 

(3.5) 

ZO -‘6 
ZI -z2 

( > 

z2 -zI 
Y(U,Z,)Y(U,Z~) - e,,z&? - 

( > 
Y(V,Z2)Y(~,Zl) 

ZO -zo 

rxz;'i? z= Y(Y(U,ZO)U,Z2). 
( ) 

(3.6) 
z2 

Finally, for any &homogeneous u, u E U and n 2 0 we assume 

I&& = IUI + Iul (3.7) 

(i.e., U,U is homogeneous and Iu,vI = ]u/ + Ivl). 
Sometimes we will emphasize that Y(u,z) is pertinent to a vertex Lie superalgebra 

U by writing Yu(u,z). 
Loosely speaking, a vertex Lie superalgebra, VLSA for short, carries the “whole 

half” of the structure of vertex superalgebra related to “positive” multiplications, except 
that properties of 1 in the definition of VSA are replaced by the half skew symmetry 
in the definition of VLSA. The half skew symmetry can be written by components as 

u,v = -E,,,. 1 (-l)“+k(Dk/k!)~,+k~ for all n > 0. (3.8) 
k>O 

Also note that in the case when U = U”, i.e., when all vectors are even, all Z2-grading 
conditions become trivial and we speak of a vertex Lie algebra, VLA for short. 

We define a homomorphism cp : U + W of two VLSA as a &-grading preserving 
linear map cp such that 

cp(4lv) = (cp(U)MVo(~>>> cpD = Dq. 

Left (resp. right, two-sided) ideals in U are defined as left (resp. right, two-sided) 
ideals for all multiplications. Note that an one-sided &-graded ideal in VLSA which 
is invariant for D must be two-sided ideal because of the half skew symmetry. For 
a subset S c U we denote by (S) a vertex Lie superalgebra generated by S, i.e., the 
smallest vertex Lie superalgebra containing the set S. 

A partial justification for our terminology might be the following lemma proved 
in [l] by Borcherds in the case when U is a vertex algebra: 

Lemma 3.1. Let U be a VLSA. Then U/DU is a Lie superalgebra with a commutator 
[u + DU, v + DU] = uov + DU. 

Proof. Since (Du)o =O, DU is invariant for right multiplications gv, and then by 
the skew symmetry (3.8) for left multiplications us as well. Hence on the quotient 
U/DU we have a well defined bilinear operation uov such that uov = -E,,,,uou. Now 
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for k=n=m =0 in (3.2) we get ua(uow) - ~~,~~a(u~w)=(uav)aw, a Lie superalgebra 
Jacobi identity. 0 

It is clear that any vertex superalgebra V may be viewed as a VLSA. Moreover, 
any subspace U c V invariant for D and closed for multiplications u,,u for n 2 0 is a 
VLSA. Note that in this case 

Yu(u,z) = Y,+(u,z) = c U,Z-n-’ e Yv(u,z), 
?I>0 

so that Y for U should not be confused with Y for V. 
For a given vertex superalgebra V we shall be especially interested in vertex Lie 

superalgebras (5’) c V generated by a subspace S and the derivation D, i.e., when 
vertex Lie superalgebras (5’) c V are of the form 

(S) = c DkS. 
k>O 

In such a case any element A in (S) can be written as a combination of vectors of the 
form P(D)u, u E S, P a polynomial, and (3.4) implies 

Y,(P(D)u,z)Q(D)v = P(d/dz)Q(D - d/dz)Yu(u,z)v. 

Hence the structure of vertex Lie superalgebra (S) c V is completely determined by 
Ys(u,z)v = Y~(u,z)u for U, 2’E S. Since 

YV(U,ZI)V = Res,, ~;‘Yv(u,zI )Yv(u,z~)I 

-ResZZz2’(Y~(~,z~)Y~(~,z2)1 - E,,~YI/(L’,z~)Yv(u,zI)~) 

= Res,, z;‘P’dw 1, Yv(w)II, 

we may use (for m 2 0) 

Res Z-lZ+$m) !? e=~Dw IT m!W,Z;m-‘, 
22 2 

0 Zl 

Res Z-IZ+$‘@ ? e~2DW21(-l)mm! 
=I I 0 Zl c ,_,, hDkwz;“-‘-“. 

and easily calculate the principal part of the Laurent series Y1(u,z)v from a given 
commutator. For example, in the case of Neveu-Schwarz algebra (cf. [12, (4.2.10)]) 

[Y(w,z,), Y(r,zz)] =z,‘6 zz Y(Dqz2) + ;q26 ; Y(r,zz) 
0 zl 0 

gives 

DT (3/2)r 
Y(co,Z)T cd c OnTZ-n--l = T  + 22. 

n>O 
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The following examples of VLSA are obtained in this way from the well known 
vertex (super)algebras associated to affine Lie algebras, Virasoro algebra and Neveu- 
Schwarz algebra; for details one may see [12, Section 41: 

The case of &fine Lie ulgebras. Here S = So = g@ Cl is a sum of l-dimensional 
space and a Lie algebra g with an invariant symmetric bilinear form (., .), 

(S) = Cl 8 span{Px 1 x E g, k 2 0) 

and 

y& z)y _ [x3 Yl / (Xl Y)l 
3 z= ’ 

Ys(x, z)l = 0, Ys(l,z)=O 
Z 

for x,yEg. 
A cute oJ‘ CI@W Lie superalgebras. Here S = g @ A4 @? Cl is a sum of 1 -dimensional 

space, a Lie algebra g and a g-module M, where both g and M have g-invariant 
symmetric bilinear forms denoted as (., .), with So =g@ Cl and S’ = M, 

(S) = Cl 69 span{Px,Pu 1 x Eg, u E M, k > 0} 

and 

ys(x z)y _ [x3 VI I  (x3 Y)l 
7’ Ys(x,z)l = 0, 

ys(u,z)u= b 
z ’ 

Ys(u,z)l = 0, 

Ys(x,z)u = x=, 
Z 

Ys(u,z)x= -x+, 
Ys( 1,z) = 0 

for x,yEg and u,v~M. 
The cuse of Virasoro algebra. Here S = So = Co @ Cl is a 2-dimensional space and 

/ E @, 

(S) = Cl @ span{Dko 1 k 2 0} 

and 

(L/2)1 Ys(o,z)o= E + $ + 7’ Ys(w,z)l = 0, Ys(l,z) = 0. 
Z 

The cuse of’Neueu-Schwurz algebra. Here S =S” = Co @ @r @ Cl is a 3-dimensional 
space and C! E C, with So = Co @ Cl and S’ = Cr, 

(S) = Cl @ span{Dko, Dkz ) k > 0) 
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and 

Ys(o,z)l = 0, 

(w3)1 Ys(z,z)z = 20 + 7’ Ys(z,z)l = 0, 
Z 

(312)~ 
Ys(O,Z)T = E + 7’ 

Z 

ys(z,z)w = 005 + $2, 
Z 

Ys(l,z) = 0. 

Remark 3.2. Since for a vertex Lie superalgebra there is no notion of a vacuum vector, 
it would be better to denote the vector 1 in the above examples by some other letter. 
So later on we shall set in the affine case So = g@ Cc with 

y+ z)v - [x2 yl ; (x3 J+. 
Z 22 ’ 

in the Virasoro case So = Co @ Cc with 

( Wk Y~(w,z)w= Do + $f + 7’ 

Z 

In all of these examples the set S c V generates the corresponding vertex super- 
algebra V. In particular, the vertex Lie superalgebra U = (S) c V generates the cor- 
responding vertex superalgebra V, and obviously this is the smallest such vertex Lie 
superalgebra. On the other extreme, for a iZ+-graded vertex operator superalgebra V 
we have U = (S) = @k>O DkS = V if we take S to be the set of all quasi-primary 
fields, i.e., S = {U E V 1 L< 1)~ = O}. 

4. Lie algebras associated to vertex Lie algebras 

Let U be a vertex Lie superalgebra with the derivation D and consider the affinization 
U @ @[q, q-‘1 as a Zz-graded tensor product of U with the even space @[q, q-l]. For 
vectors in U @ @[q,q-‘1 we shall write 

u,=u@q” 

when u E U and n E Z’. Consider the quotient Zz-graded vector space 

The image of the vector u, in the quotient space we again denote by u,. Note that we 
have three meanings for u,, originally for n > 0 as a linear operator on U, now also 
for all n E Z as an element of U @ @[q, q-‘1 or 5?(U), but it will be clear from the 
context which meaning we have in mind. 



M. Primcl Journal of’ Pure und Applied Algebra 135 (1999) 253-293 265 

Theorem 4.1. .9(U) is a Lie superalgebra with the commutator defined by 

[u,, L!pl = c 
i>O 0 y (w)n+p--i (4.1) 

,for u, c E U and n, p E Z. Moreover, we have the relation 

(Du)n = -nu,_] (4.2) 

,f& all UEU, FEZ, and the map D:2’(U)+T(U) dejined by D(u,,)=(Du),, is an 
even derivation qf the Lie superalgebra P’(U). 

In the case when U is a vertex algebra this theorem is a special case of Borcherds’ 
Lemma 3.1 applied to the affinization of U, in such a case a tensor product of vertex 
algebras. Direct proofs are also known. See [l 1, Proposition 2.2.3, Remark 2.2.41. Here 
we follow [ 161 where the techniques introduced in [7] are used. By following [4] we 
may call sP( U) the local algebra of the vertex Lie algebra U. This notion of local 
algebra F(U) is a special case of a more general notion of local vertex Lie algebra 
over the base space U introduced in [3]. 

It will be convenient to consider formal Laurent series (vertex operators) 

Y(U,Z) = c U,Z?_-l 
nEE 

(4.3) 

with coefficients in Z(U). Then we can write relations (4.1) and (4.2) as 

[Y(u,z,), Y(u,z2)] =Res,,z;‘6 Y(Y(vo)w2>, (4.4) 

Y(Du,z) = &Y&z). (4.5) 

Note that in (4.4) there are three Y’s with coefficients in Z(U) and Y(u,zo) defined as 

c n>O %?zgn-’ has coefficients in End(U). Also note that in the expansion of S-function 
there are only nonnegative powers of za, so when we calculate the residue Reszo we 
need to know only the principal part of Y(u,za). For this reason the commutator formula 
(4.4) written in components looks the same as in the vertex algebra case. This is the 
key observation used in the proof of the above theorem. 

Proof. First note that for vectors u, = u @ q” formula (4.1) defines a bilinear operation 
[., .] which makes U @ C[q,q-‘1 a Z2-graded algebra. Since D is an even derivation 
of U, it is obvious from (4.1) that D = D @ 1 is an even derivation of [., .I. Relations 
(3.4) for the derivation D of VLSA U imply 

[(Du), + nu,- I, upI = 0, [u,, (DvIp + PO,-I I= 0. 

Here the first relation follows from (Du), = -iui_l, for the second we also need 
ui(Du)=D(u,v) - (Du)~u and the result is in span{(Dw), + nw,_l}. Hence the bi- 
linear operation on the quotient space 9(U) . IS well defined. It is clear 2?(U) is 
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&-graded algebra and that D is well defined even derivation such that (4.2) holds. 
It remains to check the axioms of Lie superalgebra. Since 

-I [Y(~,~I),Y(~,z~)I=R~~~~~z~ 6 Y(Y(~,zo)~,z2) (4.6) 

Y(eZoDY(v,-zs)u,z2) 

= c,, L’ Reszo z; ’ 6 

(4.7) 

(4.8) 

Y( Y(Q -zo h, z1) 

-&,tU(&zz), ycu,zi >I, 

the skew symmetry for Lie superalgebra holds. Note that (4.7) follows from (4.6) by 
using the half skew symmetry (3.5). As it was already mentioned, for getting this 
equality it was sufficient to know the equality for principal parts of Laurent series in 
variable ZO. Note that (4.8) follows from (4.7) because (4.5) holds. 

To prove the Jacobi identity for Lie superalgebras we use the definition of commu- 
tator and get 

Note that in the expansions of &functions there are only the nonnegative powers of 
212 and ~23 and that, by taking the residues, the above expression involves only the 
coefficients of the principal part of Y(Y( u,z12)0,~23)w. Hence we may apply the half 
associator formula (6.8) and get 

x y(y(~,zl3)y(~,z,,)w,z,> (4.9) 

x y(y(~,z23)y(~,zl3)w,z3) (4.10) 
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~~(~(~,~23)~(~,~13)~,~3) (4.12) 

= [Y(U,Zl),[Y(W2), Y(~,Z3)11 - &,,,[Y(21,Z2),[Y(U,ZI), Y(~~Z3)11, 

which is the Jacobi identity for Lie superalgebra y(U). Note that we obtained the 
expression (4.12) from (4.10) by using the identity for &functions: 

y (z3 +z23)"-'(213 - Z23)rZ;n-' 

=z2 b -' -(*) F 2 ,yzk (k)(:)z;-*ijl(", -Z23YZT' 
_ 

This identity for &functions should be understood in the context of the above proof, 
i.e., in the presence of the term Y( Y(u,z13)Y(v,z23)w,z3) and the residues Res,,, Res,,,. 
We obtain the expression (4.13) from (4.11) in a similar way. 0 

Remark 4.2. Motivated by a definition of local vertex Lie algebra over the base 
space U given in [3] and by methods used in [9], let us note the following: 
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Proposition 4.5. Let cp : U -+ W be a homomorphism of vertex Lie superalgebras and 
let _Y*(cp) be the restriction of _Y(cp) on Y*(U). Then 2?~(cp)(Y~(U)) c 5?*(W) 
und 

_!if_(q!l):sy_(u)+LL(w), ~+((P):~+(W+~+(W) 

are homomorphisms of Lie superalgebras. Moreover, -U,( cp)D = D2?&( p) 

Theorem 4.6. The map 

is an isomorphism oj’Z,-graded vector spaces U and Y_(U) and l”D = DILL. 
Moreover, f CJI : U + W is a homomorphism of’ vertex Lie superalgebras, then 

w(P = P-((P)lu. 

Proof. It follows from (4.2) that U-X_-1 =(l/k!)(Dku)_j for k > 0, and this implies 
that IU is surjective. Let u-1 = 0, that is 

M 

UC& = c (Do(i) @ qf + iv(‘) @J qi- 1 ) 

,=-n 

for some n, m > 1 and some v(j) E U. Obviously ci>O (Dv(‘) @q’ + iv(‘) ‘8 q’-’ ) = 0. 
Since u(‘) = 0 implies Dv(‘) = 0, by induction we get i(j) = 0 for all i < 0, and hence 
u = 0. So II/ is an isomorphism. The remaining statements are clear. 0 

We may identify U with Z(U) via the map II/ and consider 

If we transport the Lie superalgebra structure of Z_(U) on U, then commutator (4. I ) 
reads for u, v E U as 

[u,v]-x((-l)“/(n+ l)!)D”+‘(~~v). (4.14) 
n>o 

Note that by Theorem 4.6 any homomorphism cp : U + W of vertex Lie superalgebras is 
a homomorphism of Lie superalgebras U and W with commutators defined by (4.14). 
Moreover, this homomorphism q~ extends to a homomorphism of Lie superalgebras 
F(U) and U(W). 

5. Enveloping vertex algebras of vertex Lie algebras 

Let U be a vertex Lie superalgebra with the derivation D and let P’( U ) = 1;“_( U ) ~4 
Y’+(U) be the corresponding Lie superalgebra with the derivation D. The induction by 
a trivial 6”+( U)-module @ gives a generalized Verma _Y( U )-module 

P‘(U) =“qqu)) @#(Y<(U)) @, 
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where @ stands for the universal enveloping algebra of a given Lie superalgebra. The 
9( U)-module V(U) is isomorphic to a quotient 

of %(D4p( U)) by a left ideal generated by Z+(U). Clearly Y‘(U) is a Zz-graded space 
and the action of Lie superalgebra Z(U) is given by the left multiplication. Note that 
the derivation D of Lie superalgebra _5?( U) extends to a derivation D of the associative 
superalgebra %(9(U)), and since D preserves T+(U), if defines an even operator D 
on the quotient V(U). We denote by 1 E V(U) the image of 1 E %(2?(U)). It is an 
even vector and we have 

Dl=O. 

If we think of V”(U) only as a Zz-graded space, then 

V(U)“%(Z(U)_) 

and under this identification 1 is the identity and D is an even derivation of the associa- 
tive superalgebra u2(9_(U)) extending the derivation D of _Y_(U). By Theorem 4.6 
we may identify U and Z(U) via the map zu, so clearly the map 

Ku: U+V(U), UHU-11 

is an injection. Sometimes it will be convenient to identify U and the Zz-graded 
subspace KU(U) c Y(U), i.e., to consider 

u c V(U). (5.1) 

Lemma 5.1. For the action of u, E _Y( U) on the module V(U) we have 

[D, u,] = (0~)~ = -nu,_ I. (5.2) 

Proof. By definition the operator D acts on a vector 

iV=ZJ’)... zbk)l E V(U), u(1) ,..., dk) E T(U), (5.3) 

as a derivation, and by definition u, acts by the left multiplication, so Du,w - u,Dw = 
D(un)w. Hence [D, u,] = D(un) = (0~)~ and relation (4.2) implies the lemma. 0 

Since Dl=O, we have D(u_~l)=[D,u_~]l=(Du)_~l. Hence DKU=KUD and on 
U c V(U) both derivations coincide. 

Since V(U) is a Z(U)-module, the formal Laurent series Y(u,z) defined by (4.3) 
operate on Y(U) and the corresponding formal Laurent series we shall denote by 
Y,.(~J(u,z). Hence the coefficients u, in 
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are operators on Y(U). Then we can restate (5.2) as 

[D, Yf (U,(V)1 = YI (u)(Dw)= g Yf (U)(V). (5.4) 

Lemma 5.2. The set of formal Laurent series { Yf.(u)(u,z) / us U” U U’} is a set qf’ 
mutually local vertex operutors on -Y-(U). 

Proof. We have already proved (5.4), that is (2.14) in the definition of vertex opera- 
tors. By construction we have 

u,l=O for all uEU, n20. 

Hence for a vector w E V(U) of the form (5.3) we have 

(5.5) 

r&w = z&U(‘). . . tP’l = [u,, u(I). . . zP]l 

for n 2 0, and then the commutator formula (4.1) implies U,W = 0 for sufficiently 
large n, i.e., (2.7) in the definition of vertex operators. The commutator formula (4.4) 
for U, v E U” U U’ written in the form (3.1) clearly implies locality and the lemma 
follows. 0 

Since (5.5) means that Yf (t,)(u,z)l is a power series in z and since by construction 

limziO Yt-(u)(u,z)l =u_ll =u, all the assumptions of Theorem 2.2 hold and we have 
the following: 

Theorem 5.3. The set {Y f (uj(u,z) / u E U” U Or’} of mutually local vertex operators 
on y/(U) generates the vertex superalgebra structure on 9“(U) with the vucuum 
vector 1 and the derivation D. 

Proposition 5.4. The map KU : U + “Y‘(U) is an injective homomorphism of vertex 
Lie superalgebras. 

Proof. We have already seen that KU is an injective Zz-grading preserving map such 
that ICUD= DIG”. So let n 2 0. Because of (5.5) and the commutator formula (4.1) 
we have 

Ufl(V-~l)=[U~,V-~]l=~ 1 (UjV),_1__il= 1 (U,V)_ll 
I_>0 0 0 

Hence 

K~(U~V)=(U,V)_,1=U,(v_I1)=(U_,l)n(V_,1)=(IC~(U))~(ti~(v)) 0 

The above proposition means that, with identification (5.1) the structure of vertex 
superalgebra on V(U) extends the structure of vertex Lie superalgebra on U c “I‘(U). 
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As suggested by the next theorem, we shall say that V(U) is the universal enveloping 
vertex superalgebra of the vertex Lie superalgebra U. 

Theorem 5.5. Let V be u vertex superalgebra und cp : U + V u homomorphism qf 
vertex Lie superalgebras. Then cp extends uniquely to a vertex superalgebra homo- 
morphism ~$3 : tf( U) + V. 

Proof. Set A4 = V-(U) Q V and for u E U define 

Ydu,z)= Y1.(U)(V) + Yv(cp(~),Z>. 

Then { Y~(u,z) 1 u E U” U U’ } is a set of mutually local vertex operators on M which, 
by Li’s Theorem 2.1, generates a vertex algebra W. Consider the restriction maps 

V(U) & W 3 V 

defined by 

PI : 4~) - 4~) I WW H ?@oC4z> I +‘(U))L 

p2 : a(z) H a(z) / V cf !&o(a(z) 1 V)l 

Step I: The maps pI and p2 are homomorphisms of vertex superalgebras. Recall 
that for two formal Laurent series u(z),v(z) E F(M) the product u(z),v(z) is defined 
by (2.12), so it is clear that for any invariant subspace N c M we have 

(4z)M)) IN = (u(z) I N),(G) IN). 

For this reason both a(z) H a(z) I v(U) and a(z) H a(z) ) V are homomorphisms of 
vertex superalgebras, the first restriction from W to a vertex superalgebra WI of vertex 
operators on v(U) generated by ( Yhf(u,z)) I Y ‘(U)= YS cvj(u,z), u E U, the second 
restriction from W to a vertex superalgebra W2 of vertex operators on V generated by 
( YM(u,z)) I V = Yv(q(u),z), u E U. Since vertex superalgebras are closed for multipli- 
cations, we obviously have 

WI c {Y,.(U)(V) I UE y‘(U)), w, c { Yy(v,z) I v E v}. 

Since in general for any vertex superalgebra the map 

Y(v,z)H v-11 = !eo Y(v,z)l 

is an isomorphism of vertex superalgebra of fields with the algebra itself, both pl and 
p2 are homomorphisms of vertex superalgebras. 

Let us note at this point that p1 is a sutjection since V*(U) 2 { Yf (u)(v,z) ( VE “f”( Cl)} 
is generated by {Y, (u)(u,z) I u E U}. 

Step 2: W is a 2?(U)-module and W = @(4u_(U))l(z). A linear map 

U @ C[q, q-l] --+ End W, u c3 q” H u(z), = YM(U,Z), 
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is obviously well defined. Since 

Du@qq”+nu@3q”-’ H (Du)(z>~ + nu(zh-1 

= Ys ~(v)(Du,z), + Yv(cp(Du)>z)t~ 

+nYf.((i)(u,~h-~ + nYdcp(uhzLl 

= dz ( %(U)(U,z) + > ( n 

$ YV(dU)>Z) 
> ,I 

+ nyY (U)(W),-I + nYv(du),z),I-I 

=( > &z) + w(z),-, = 0, 
n 

we have a well defined map on the quotient 

L?(U)+End W, u, ++ u(z), = &4(u,z),. 

Since cp : U + V is VLA homomorphism, we have for n > 0 

(w)(z) = YY (U)(W,Z) + Yv((P(unu),z) 

= y/ (U,(WJ> + yv(cp(u)ncp(t’)~z) 

= h (u,(v)nyY (U)(W) + yv(cp(~),z),y~~(4o(~),z~ 
= u(z>,4z), 

which together with (4.1) and (3.1) implies 

= [u(z>p, 4z)ql. 

Hence the map u, H u(z), is a representation of Z( Or) on W. 
By definition W is generated by 1 = I(z) and the set of homogeneous fields u(z) = 

Yh,(u,z), u E U” u U’. This means that we consider all possible products like 

((U(‘)(Z),,P (z)),,2(~‘3’(z),,(~‘4’(z),,u(5)(z))). 

It is easy to see by using the associator formula (cf. (3.2)) that W is spanned by 
elements of the form 

u”‘(z),,(u’2’(z),,(. . . (u’k’(z)n,U’k+“(z)). . .)) 
= U”)(Z),, zP(z),, U’~‘(z),U’~+“(Z)_,z(z), (5.6) 
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J’), J2) 
>..., dk+‘) E u, rz’,Q , . . . ,nk E Z. Hence W = %(9(U))](z). Since we have 

u(z),Z(z) = 0 for n > 0, by using the PBW theorem we finally get W = @(K(U))1(z). 
Step 3: The map p1 : W + V(U) is an isomorphism of vertex superalgebras. We 

already know that p1 is a surjective homomorphism. If we are to identify v H Yy (~1 
(v,z) for r E V(U), the map pl is just a restriction a(z) w a(z) 1 V-(U), so on mono- 
mials of the form (5.6) we have with our identification 

PI : u(‘)(z),, u(2)(z),, . . . U(k)(z),,U(k+‘)(z),,,ll(Z) H u(‘)zp n1 
u(k)u(k+l)l. 

@ . ’ ni 4+1 

Hence for u E %(X(U)) we have pl(uZ(z)) = ul “u E @(9-(U)). This implies that 
pl is an injection as well and that we have a homomorphism of vertex superalgebras 

-I 

II/‘(U) PI w 2 v. 

Set 45=p20p;~. Then by construction we have for u E U 

Hence 6 1 U = p. Since iJ generates the vertex superalgebra -1/‘(U), the homomorphism 
C$ is uniquely determined by cp. 0 

Corollary 5.6. Let cp: Ul-+ U2 be a homomorphism of’ vertex Lie superalgebras (/I 
and U2. Then cp extends uniquely to a vertex superalgebra homomorphism d”(q): 

7qU)+VU2). 

We shall say that a 2( U)-module M is restricted if for any u E U, w EM 

u,w = 0 for n sufficiently large. 

Let us denote by 2?(U) x CD a Lie superalgebra with [D, u,] = D(un) and let us say 
that a (9(U) x CD)-module M is restricted if M is restricted as an -44( U)-module. 
Note that V(U) is a restricted (.9(U) x CD)-module. 

If A4 is a Z( U)-module, then for any u E U we can form a formal Laurent se- 
ries Y~(u,z) = CnEH u,z-“-’ with elements u, E 9(U) acting as operators on the 
module M. If A4 is a restricted (Z(U) x CD)-module, then {Y~(u,z) 1 u E U”U U’} 
is a set of mutually local vertex operators on M. 

Lemma 5.7. Let A4 be a restricted (di4( U) x CD)-module and let W be u vertex 
superalgebra generated by { Y~(u,z) 1 u E U” U U’}. Set u(z) = YM(u,z) and denote 
by u(z), operators on W dejined by multiplications (2.12). Then the linear mup 

Z(U)+End W, u,++u(z)~ 
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is lvell dejined and 

(ug)(z) = u(z),v(z) for cl11 n 2 0, 

275 

c&l, hII H [4z)m 4zM 

In another rvords, the map 

I/ + w, u-u(z) 

for all n,m E Z. 

(5.7) 

is u homomorphism of vertex Lie superalgebras and W is a restricted (.9(U) x @D)- 
module. 

Proof. Set N = v’(U)@M and for UE U 

YN(U,Z)‘YY (U)(V) + YM(U,Z). 

This vertex operators on N generate a vertex superalgebra V, denote by pa a restriction 
map from V to “Y‘(U) and by p2 a restriction map from V to W. Then both pl and pz 

are homomorphisms of vertex superalgebras and both 9/(U) and W are V-modules. By 
[ 12, Lemma 2.3.51 the “structure constants” in the commutator formula for V are com- 
pletely determined by the “structure constants” appearing in the commutator formula 
for a faithful V-module. Since for u(z) E V we have Y,-,u,(u(z),z,) = Y,.,,)(u,zr ), i.e., 
u(z), acts on y/(U) as u,, the commutator formula for V-module V‘(U) reads 

[u(z>,, 4z)ql= [ up, vql = c 0 z (&JJ>(z>,+,-n 
PI>0 

and implies the commutator formula for V-module M 

[u(z)p, v(z)ql = c (;) (f4JJD),+,-n. 
lZ)O 

Since [u(z),,v(z),] equals C n20 ($(u(z),u(z))~+~_,, the lemma follows. 0 

Since by Theorem 5.5 a VLSA homomorphism (5.7) extends to a VSA homomor- 
phism *f‘(U) + W, and since by Li’s Theorem 2.1 M is a W-module, we have the 
following: 

Theorem 5.8. Any restricted (P’(U) x CD)-module is a Y’( U)-module. 

Remark 5.9. The proofs of Theorems 5.5, 5.8 and Lemma 5.7 are modeled after the 
arguments in [12, Section 41. Also note that Theorem 5.3 can be proved without using 
Theorem 2.2, but rather by using the proof of Theorem 5.5 with Step 2 changed with 
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the help of Lemma 5.7. This would be parallel to the argument in [12] when proving 
that for an affine Lie algebra S the generalized Verma module M,(C, C) is a vertex 
algebra and that any restricted g-module of level C! is a M,(/,@)-module. 

The results in this section are similar to some results in [3]. 

6. Commutativity and the skew symmetry for VLA 

For the purposes of the last two sections let us make a few technical definitions: Let 
I/ be a &-graded vector space equipped with an even linear operator D on U called 
the derivation and a linear map U iz-‘(End U)[[z-‘I], u H Y(u,z) = Cn>O U,Z-+‘, _ 
satisfying the following conditions for homogeneous u, u E U: 

u,v = 0 for n sufficiently large, 

(Du),v= --Izu,_~v, 

D(unv) = (Du)nv + u,(Dv), 

Iu,vI = IuI + Ivl. 

Then we shall say that U is a VLA-J-SS (something like a vertex Lie superalgebra 
without the half Jacobi identity and without the half skew symmetry). 

If for an VLA-J-SS U the half Jacobi identity (3.6) holds, then we shall say that U 
is a VLA-SS. 

If for an VLA-SS U the half skew symmetry (3.5) holds, then 
Lie superalgebra. 

For U and W having any of the above structures we define a 
be a Zl-grading preserving linear map 40 : U + W such that 

44~) = (cp(~))~(cp(v))~ cpD =DP 

clearly U is a vertex 

homomorphism CP to 

Left (resp. right, two-sided) ideals in U are defined as left (resp. right, two-sided) 
ideals for all multiplications. 

Lemma 6.1. In the dejinition of VLA-SS the hay’Jacobi identity can be equivalently 
substituted by the half commutator formula. 

Proof. Let us assume that the half commutator formula holds: 

Then for m > 0 we have 

(6.1) 

(6.2) 
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= Res, (~1 - z~)~z~‘c? 

-1 
=(zl -z2)“‘Resz0.z, 6 

= (z, - z2)m Res,, z[‘6 Y(~,.a)Y(~,Z2) 

-c,,,,(zl - ~2)~ Res,, z,‘6 Y(W2)Y(%Zl) 

(6.3) 

(6.4) 

(6.5 1 

(6.6) 

= Res,, zrz[’ 6 

-E,_,, Res,, ztz;‘S ‘2 Y(v,z2)Y(u,zi ), 
( ) -zo 

(6.7) 

which is precisely the half Jacobi identity. 
Here we use the usual properties of &function. Since m > 0, we have a polynomial 

zr = ((ZO -zi ) + ~1)“’ which may be expanded in powers (20 -zi )kzy-k. In the presence 
of d-function we may replace a power (za - ~1)~ by (-z~)~, and as a result we get a 
polynomial (zi -zz)~. In this way we get (6.3) from (6.2) and (6.7) from (6.6). Since 
the polynomial (zr - ~2)~ is a linear combination of powers z~z;-~, k >_ 0, m - k > 0, 
to establish the equality of principal parts of (6.4) and (6.5) it is enough to know the 
equality of principal parts of formal Laurent series appearing in the half commutator 
formula (6.1). 0 

Lemma 6.2. In the definition of VLA-SS the half Jacobi identity cun be equivalentl~~ 
substituted by the half associutor formula 

Proof. Let us assume that the half associator formula holds: 

-I Y(Y(u,zo)v,z~) P Res,, z. 6 Y(w >Y(u,zz) 

-E,,,: Res,, z,‘6 y(w2)y(vl). 

Let n > 0. By using arguments as in the proof of Lemma 6.1 we get 

(6.8) 

Res,, z;z;‘6 
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=(z2 +zo>“y(y(~,zo)w2) 

z(z2 +zo)‘Res,, z;‘6 Y(u,z1 )Y(u,z2) 

-E,.,,(z~ +zO)~ Res,, z;‘6 

= Res,, (~2 + ZO)“Z;‘~ 

-E,,, Resz, (~2 +zo)~z;‘c? y(hz2)y(%zl) 

= Res z”z-‘S ZI I 0 

--~,,,Res,, z;z;‘6 Y(v,z2)Y(u,zl), 

which is precisely the half Jacobi identity. ??

Remark 6.3. The proofs of Lemmas 6.1 and 6.2 are modifications of the proofs of the 
corresponding statements for vertex superalgebras given in [12, Propositions 2.2.4 and 
2.2.61. 

Lemma 6.4. Let U be u VLA-J-SS. Let VI be a subspace spanned by vectors of the 

f orm 

u,v,w - e,,v,u,w - w i>O 

7 (ui~)ri+m-iw (6.9) 

for all homogeneous u, v, w E U and m, II E N. Let U2 be a subspace of U spanned by 
vectors of the form 

~(-l)‘(~)(u,,k-;~u,,+iw) - ~u,c(-l)x~,+k-i(~,+iw)) 
i>O 

Uk+iU)m+n--iW (6.10) 

for all homogeneous u, v, w E U and k, m, n E N. Then UI = U2. 

Proof. For two Laurent series A and B let us write A E B if the coefficients of principal 
parts of A and B are equal modulo elements in lJ1. By definition we have 

-I [Y(u,zt),Y(v,z2)]~-Res,z, 6 
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Then, by almost copying the proof of Lemma 6.1, we get 

-E,, ,. Reszo zrz; ’ 6 

which implies U2 c UI. It is clear that Ut c U2. 0 

If U is a VLA-J-S& we shall denote by (Jacobi) the two-sided ideal in U generated 
by vectors of the form (6.10), or equivalently, by vectors of the form (6.9). It is clear 
that (Jacobi) is D invariant since D is a derivation for all multiplications. It is also 
clear that (Jacobi) is a Zz-graded subspace of U and that we have: 

Lemma 6.5. Let U he a VLA-J-SS and let 

U, = U/(Jacobi). 

Then 0; is a VLA-SS with the universal property that uny homomorphism q~ from U 
to u vertex Lie superalgebra V factors through U, by an homomorphism qJ from U,, 
to v. 

Lemma 6.6. Let W be a VLA-SS and let (skew symm.) be u subspuce spanned by, 
vectors 

v,,w + Ed.,, c (- l)“+k(Dk/k!)w,+kv 
k>O 

(6.11) 

fbr all homogeneous v, w E W and n > 0. Then (skew symm.) is a &-graded taco-sided 
ideul in W invariant ,for D. Moreover, 

W, = W/(skew symm.) 

is a VSLA with the universal property thut any homomorphism cp ,from W to a vertes 
Lie superalgebru V ji7ctors through W,, by an homomorphism cpss ,from W,, to V. 

Proof. Set WI = (skew symm.). It is clear that DWI c WI since by assumption D is a 
derivation for all multiplications. 

For two Laurent series A and B let us write A c B if the coefficients of principal 
parts of A and B are equal modulo elements in WI. By definition we have 

e -z~DY(v,z2)w~ C,;,,Y(W, -z2)u. 
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In order to show that Wi is a left ideal consider 

Y(u,zo)epZZD Y(v,z~)w = epzzD Y(% zo + z2 1 Y(h z2 )w 

=e -M Res,, z;‘6 Y(u,zo $z2)Y(v,z2)w 

= e-z2D Resz, zn’6 

= E,?,:e -z2D Res,, ~0’6 

+ e-d Res,, zF’6 Y( Y(U,ZO)V,ZZ)W 

= E,, ,Res,, z0 ’ 6 

E E,,,E,,,E,,, Res,, (-z2)-‘8 

N 

ZX - 

Hence we 

fe -=2DY(Y(u,zo)u,z2)w 

EpwY(u,zo)Y(w, -z2)u - 8,,,Et.,,J(w, -z2>Y(vo>v 

+e-Z2DY( Y(u,zo)v,z2)w 

E,,Y(u,zo)Y(w, -z2)0. 

have 

Y(u,zo)(eCZZDY(u,z2)w - r-:,,,Y(w, -z2)u) E 0. 

This shows that Wt is a left ideal, i.e., that u,W, C WI for all u E W and n 2 0. It 
remains to show that Wi is a right ideal, so consider 

Y(Y(u,zo)u,z~)w E E,,,~E,.,, eizDY(w, -z~)Y(u,z0)u (6.12) 

E E,,~E,,~ e@Y(w, -z2)~~,,.e”~~Y(u, -za)u (6.13) 

E E~,~Y(~‘~~Y(u, -zo)u,z~)w. 

Hence we have 

Y( Y(u,zo)u - E,,. eZoDY(u, -zo)u,z2)w 3 0. 

This shows that Wi is a right ideal, i.e., that (Wi),wC WI for all WE W and n>O. 
Note that we obtained (6.13) from (6.12) by using the fact that IV, is a left ideal 
invariant for D. The remaining statements are clear. 0 
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If U is a VLA-J-SS, we set 

u J+ss = (UJ),, = U/(Jacobi)/(skew symm.). 

Moreover, for any homomorphism cp from U to a vertex Lie superalgebra V we set 

(PJ+ss = ((PJ)ss = % o VJ. 

Then clearly cp : U 4 V factors through UJ+~ by the homomorphism (PJ+ : uJ+ + V. 
Obviously 

U J+ss = UI(J + SS), 

where (J + ss) is a two-sided ideal in U generated by elements of the form (6.9) 
and (6.11). It is clear that (J + ss) is D invariant since D is a derivation for all 
multiplications. It is also clear that (J + ss) is Zl-graded. 

7. Vertex Lie algebras generated by formulas 

Let S be a vector space given bilinear maps F,” : S x S + S for n, k 2 0. Then we 
can ask under what conditions on F,” there is a vertex algebra V containing S and 
generated by the set of fields { Y(u, z) 1 u E S} f or which the commutator formula is 

[Y(u,z,), Y(u,zz)] = c y ( &)nz;%/z*) ($)” WkW)7*>. 
n,kzO 

If there is such V, we could say that V is generated by a formula defined by the set 
of maps {Fok 1 n, k > 0). There are many examples when this is the case; besides the 
examples in [12] mentioned before one may consult [3] and the references therein. 

We shall say that a &graded vector space S is a formula if it is equipped with 
infinitely many Zz-grading preserving linear maps 

with the space C[D] of formal polynomials in D considered to be even, such that for 
U.UES 

F,(u, u) = 0 for II sufficiently large. (7.1) 

We shall write 

It is clear that giving the maps F, for all n > 0 is equivalent to giving a linear map 

Y:S&S+z-‘(C[D]@S)[[z-‘I], Y(u,z)u = c F,(u, u)z-“-’ 
tl>O 
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and it would be proper to say that a formula is a given map Ys = Y, or a pair (S, Y ), 
with the prescribed properties. 

We define a linear operator D(Dk @u) = Dk+’ @ u and consider S c C[D] @S. Then 
Dk c?$ u can also be written as Dku, and in general elements in @[D] @S can be written 
as linear combinations of elements of the form P(D)u, where u E I/ and P(D) is a 
polynomial P of the operator D. We shall use the notation A 1~~0 = 0 with the obvious 
meaning that A E D@[D] @ S. 

Example 1. Let S = So =g @ Cc be a sum of l-dimensional space and a Lie algebra 
g with an invariant bilinear form (., .). Set 

XOY = ix, Yl, xoc = cox = cot = 0, 

XI y = (x, Y)C, x,c=c,x=c,c=o 

for all x, y E g. Set F, = 0 for IZ 2 2. Then S is a formula. We could also write 

y(x z)y _ [x7 VI I (4 Y)C 
2 -> Y(x,z)c = 0, Y(c,z) = 0. 

Z 22 

Example 2. Let S = So = Co CB Cc be a 2-dimensional space. Set 

(1/2k Y(o,z)o= e + F + 7, Y(o,z)c = 0, Y(c,z) = 0. 

Then S is a formula. 

Lemma 7.1. Bilinear operations F, OFZ S c @[D] @S extend in a unique )tuy to Z2- 
grading preserving linear mups 

F,:(@[D]~S)~(~[D]~S)i@[D]~S, nEN 

such that 

(DA),B = -nA,_ ,B, (7.2) 

D(A,B) = (DA),B + A,(DB) (7.3) 

for all A, B E @[D] @S and N 2 0, where we write &(A, B) = A,B. Moreover, for A, B E 

WI @S 

A,B = 0 jbr n suficiently large. 

Proof. First note that our conditions can be written as 

Y(DA,z)B = (d/dz)Y(A,z)B, Y(A,z)DB= (D - d/dz)Y(A,z)B. 

Hence it must be 

Y(P(D)u,z)Q(D)v = P(d/dz)Q(D - d/dz)Y(u,z)u (7.4) 
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for U,V E S and any polynomials P and Q. It is easy to check all the properties 
stated. 0 

In a way Lemma 7.1 means that a formula extends to a VLA-J-SS. If cp : S 4 V is 
a linear map from a formula S to a vertex Lie superalgebra V, we extend it to a map 

@:C[D]@3Ss v, @(Dk @ U) = D%p(zf). 

We shall say that cp : S --j V is a homomorphism from S to V if 4 is a homomorphism 
(cf. Section 6). By using (7.4) it is easy to see that a linear map cp :S + V is a 
homomorphism if and only if 

$(u,v) = (P(u)~c&v) for all u, v E S. 

Obviously Lemmas 6.5 and 6.6 imply: 

Lemma 7.2. Any homomorphism cp : S + V from a formula S to a vertex Lie su- 
peralgebra V jhctors through (C[D] @S)J+,, by a homomorphism @J+ss: (C[D] @ 
S)J+ss --j V. 

We shall say that S is an (J + ss)-injective formula if the restriction of the quotient 
map to S: 

S q WI 6~ S + (WI @ Sb+ss 

is an injection. 

Lemma 7.3. A jbrmula S is (J + ss)-injective if and only cj” there is a vertex Lie 
superalgebra V and an injective homomorphism q from S to V. 

Proof. If S is (J +ss)-injective, then take V = (@[D] 8 S)J+~~. If cp : S + V is injective, 
then the restriction on S of the quotient map must be injective. 0 

In the case when S is (J+ss)-injective we can consider S as a subspace of the vertex 
Lie superalgebra U = (@[D] 18 S)J+~~ for which the multiplications u,v are determined 
by the formula 

(7.5) 

Moreover, for a VLSA V a linear map q : UJ+~~ --f V is a homomorphism if and only if 

cp(u),~(v) = c Dk(p(ck(u, v)) for u, v E S. 
k>O 

In another words, relations (7.5) consistently determine the multiplications u,v in 

a vertex Lie superalgebra U = span{Dkw / w ES, k > 0} if and only if S is (J + ss)- 
injective. What remains to be seen is under what conditions this is the case. We have 
only a partial answer to this problem which, at least, covers the examples listed before. 
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The following two lemmas are the consequence of 
be simpler by using [12, Eqs. (2.1.8) and (2.1.15)]: 

135 (1999) 253-293 

(7.4), some calculations get to 

Lemma 7.4. For u, v, w E S and polynomials P, Q and R we have in C[D] @ S 

[Y(W)w 1, Y(Q(D)w )lR(D)w 

-Res,, z;’ 6 Y(Y(P(D)~,~o>Q<D)u,z~)R(D)w 

= P(d/dz,)Q(d/dzz)R(D - d/dz, - d/dzz) 

[Y(u,z,), Y(v,z~)]w - Res,z;‘6 

Lemma 7.5. For u, v E S and polynomials P and Q we have in @CD] 18 S 

Y(P(D)u,z)Q(D)v - E,,,eZDY(Q(D)v, -z)P(D)u 

= P(d/dz)Q(D - d/dz)(Y(u,z)v - s,,t.eZDY(v, -z)u) 

= P(d/dz)Q(-d/dz)(Y(u,z)v - .su,rrY(v, -z)u>Io=o, 

where E means that the coeficients in the principal part of Laurent series in z are 
equal module subspace DC[D] C$ S. 

Proposition 7.6. Let S be a formula and assume that F,(u, v) ES for all u, v E S and 
n 20. Then @[D] @ S is a vertex Lie superalgebra tf and only tf F, = 0 for all n > 1 
and FO defines a Lie superalgebra structure on S. 

Proof. Let @[D] @ S be a VLSA. Then the assumption F,(u, v) E S together with the 
half skew symmetry relation (3.8) implies F, =0 for all n2 1 and UOV=--E~,~VOU. The 
Jacobi identity (3.2) for k =m = n =0 is the Jacobi identity for Lie superalgebras. 
In the same way we see that the assumption F, = 0 for all n > 1 and FO a Lie su- 
peralgebra commutator implies the half Jacobi identity and the half skew symmetry 
relation for elements in S, so then by Lemmas 7.4 and 7.5 they hold for all ele- 
ments in @[D] @ S. ??

Clearly Lemmas 6.1 and 7.4 imply the following: 

Proposition 7.7. Let S be a formula. Then C[D] @ S is a VLA-SS if and only zf the 
half commutator relation (6.1) holds in C[D] @ S for all u, v, w E S. 

Note that by Lemmas 6.4 and 7.4 the ideal (Jacobi) in @[D] @ S is a two-sided D 
invariant ideal generated by elements 

u,v,w - &,,“V,U,W - c( > 7 (UiV)n+m-iw 
i20 

(7.6) 
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for all homogeneous u, v, w E S and m,n E N. Also note that by Lemmas 6.6 and 7.5 
the ideal (skew symm.) in (@[D] @ S)J is a two-sided D invariant ideal spanned by 
elements 

u,v + C,>, c (- 1 )n+k(Dk/k!)v,+,+U (7.7) 
k>O 

for all homogeneous u, v E S and n E N. Hence it is clear from our construction of 

(C[D] @ S)J+~~ = (C[D] @ S)/(Jacobi)/(skew symm.) = (C[D] @ S)/(J + ss) 

that we have 

Proposition 7.8. Let S be a formula such that (J + ss) c D@[D] @S, or equivalently, 
such that 

(Jacobi) c DC[D] ~3 S 

and that jbr all homogeneous u, v E S and n > 0 

(7.8) 

u,v + c,,,.( - 1 )‘?I,u E D@[D] @ S. 

Then S is (J + ss)-injective. 

(7.9) 

Note that condition (7.9) is equivalent to &“(u, v) = -E,,,,(-1 )nF~(v,u). In 
Example 1 it reads [x,~] = -[v,x], (x, y) = (v,x), whereas in Example 2 it is obvi- 
ously satisfied. 

In Example 1 condition (7.8) holds since (Jacobi) = 0. This amounts to a verification 
of relations 

u()vow - v(‘uow = (uov)ow, 

UOVlW - V’UOW = (uov),w, 

U’VOW - V(plW =(uov)lw + (u,v)ow 

for U, v, w E S, the relation ut VI w - VI ut w = (utv)~ w and all the other obviously hold. 
In Example 2 condition (7.8) holds because (Jacobi) = D@[D]c. In principle we could 

see this by a direct computation of elements in (7.6) i.e., by a direct computation of 
the principal part of 

but since we know there is a Virasoro vertex operator algebra V of level e # 0, we 
can argue the other way around: First note that D@[D]c is a two-sided D invariant 
ideal in C[D] @C S. By a direct computation in @[D] @ S we see that 

wow3w - cu3000 - (w~o)~w = -( 1/2)Dc, 
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so (Jacobi) >D@[D]c. A linear map @[D]@S 4 V defined by c H /I, w H w factors 
through the quotient 

Cce3@[D]w E (@[D]@S)/D@[D]~+span{l,D~o)k>O} C V 

and it is obviously a homomorphism of VLA-J-SS. Since {l,Dku 1 k > 0} is linearly 
independent set in V, this map is an isomorphism, and hence (Jacobi) = D@[D]c = 
D@[D] @ c. 

Example 3. Let S = So = BCE Cc be a sum of l-dimensional space and an algebra (B, .) 
with a symmetric bilinear form (., .). For U, v E B set 

D(u . v) 
Y(u,z)v = ~ 

u . v + 2’ . 11 
+ 

Z 22 
+ $4 v)c 

-QT-’ Y(u,z)c = 0, Y(c,z) = 0. 

It is easy to see that for U, v, w E S the elements of the form (7.6) and (7.7) are in the 
ideal D@[D] @I c, or equivalently, that (J + ss) is contained in the ideal D@[D] @ c, if 
and only if B is a right Novikov algebra (cf. [15]), i.e. if and only if 

u (v w) = v (u w), 

(v~W)~U+V~(U~W)=v~(W~U)+(v.U).W, 

(u~v,w)=(v’u,w)=(v,u’w)=(v,w’u). 

If B is an associative commutative algebra with a symmetric associative bilinear form 
(., .), then all these conditions are clearly satisfied. For an obvious noncommutative 
example we take a linear functional 2 on a vector space B and set U. v = i(u)v, (u, v) = 
,?(u)&v). Note that 2(w) = 1 implies w . co = co. 

If the above conditions are satisfied, then S is (J+ss)-injective, that is S c U = (@[D] 

@s)J+,,. If we set y(%z)= CnEZ u(n>z +-2 then in the corresponding Lie algebra , 

Y(U) we have the commutation relations 

[u(n), v(m)] = (n + 1 )(v . u)(n + m> - (m + 1 )(u . v)(n + m> 

1 rz+1 6 
+Z 3 ( 1 

n+nr.O (u, v)c. 

We can summarize our constructions in the following: 

Theorem 7.9. Let (S, Ys) be a jbrmula given by 

Ys(u,z)v = c 
D” @ F,k(u, v) 

.,n+l 
n,k>O i 

and assume that (Jacobi) 1~~0 = 0 and F,O(u, v) = --E& - 1 )n~,O(v, U) for u, u E ,S and 

n20. 
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Then there exists a vertex superalgebra V and an injective homomorphism S of V 
such that V is generated by the set ofhelds { Y(u,z) 1 u E S} for which the commutator 
formula is 

=c 
n.k>O 

(7.10) 

Among all such vertex superalgebras, i.e., S -+ V to be precise, there exists a vertex 
superalgebra Y( (S) ) such that any other V is a quotient of Y((S)). Moreover, jar 
any V as above we have 

(7.11) 

Proof. By Proposition 7.8 the formula S is (J + ss)-injective. So consider S c(S), 

where (S) = (@[D] ~3 S)J+~~ is a vertex Lie algebra. Note that by our construction on 
the quotient (S) we have a relation 

u,v = x Dkck(u, v) 
k>O 

(7.12) 

for U, v E S, with F,k(u, v) E S. Let v( (S)) be the universal enveloping vertex algebra of 
(S) and, as usual, consider S c(S) c v((S)). S’ mce (S) is generated by S and D, vertex 
superalgebra ?Q”( (S) ) . g IS enerated by { Y(u,z) 1 u E S} and (7.10) is just the commutator 
formula in which the product u,v in (S) c Ilr( (S)) IS ex p ressed by using (7.12). Since 
on (S) c Y‘( (S)) the operations for n 20 coincide, (7.11) follows as well. 

Now assume that V is another vertex superalgebra and that cp : S L) V is an injective 
homomorphism from S to V. By Lemma 7.2 the homomorphism cp factors through 
(S) by an homomorphism GJJfss: (S) + V. By the universal property of v( (S) ) this 
homomorphism 4J+ss extends to a homomorphism Y( (S) ) + V, and it is surjective 
since S generates V. 0 

We may illustrate Theorem 7.9 on the Virasoro formula S given in Example 2. We 
saw that U = (@[D] ~3 S)J+~~ is generated by S and that (S) = U = Cc @ @[D]w with 
DC = 0. The corresponding Lie algebra 3’(U) is the Virasoro Lie algebra 

JF( U) = Cc 63 span{l(n) 1 n E Z} 

with a central element c and the commutation relations 

[L(n),L(m)] = (n - m)L(n + m) + i 
( 1 

n 1’ &fm,oc. 

Here we use the usual notation 

Y(w,z) = c o,z-“-l = c L(n)z-“-2, 
nEZ nEz 
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i.e., L(Pz)=o,+I, and C=C_I, c,=O for n#-1. We also have 

E(U)=@c$span{l(n)In< -2}, 9+(u)=span{l(n)jn> - I}. 

The derivation D of the Lie algebra 9(U), defined by D(un)=(Du),, equals ad(L( - I)), 
i.e., 

D(L(n))=-(n + l)L(n - l)= [L(-l),L(n)], D(c)=O. 

By construction, the universal enveloping vertex algebra y’.((S)) of the vertex Lie 
algebra U = (S) can be viewed as the universal enveloping algebra %!(P-( U)) of the 
Lie algebra K(U). Under this identification 1 is the identity and D is a derivation 
of the associative algebra “#(K(U)) extending the derivation D of the Lie algebra 
_E( U). The vertex algebra V( (S) ) is generated by fields 

Y((%z), Y(c,z)=c and Y(l,z)=id! (ls)). 

Note that c acts as a left multiplication by c, and that D =L(- 1). 
For any vertex operator superalgebra V of level P with a conformal vector o we 

have an injective homomorphism S of V, defined by c H Cl, o H co, which extends 
to a homomorphism ?^( (S)) + V of vertex superalgebras. Clearly (c - Pl) = (c - 
/id)V((S)) is an ideal in V-((S)), so we have a vertex superalgebra homomorphism 

‘9.( (S))/(c - Cl) + v. 

8. Conformal vectors 

In the previous section we have considered three examples, and in each of them the 
corresponding vertex Lie algebra U = (C[D] @J S)J+~~ is a quotient of C[D] @S by the 
ideal (J + ss) = D@[D] @c. In this section we will show that this holds in general for 
certain class of formulas, roughly speaking the ones corresponding to vertex operator 
superalgebras. For this reason we need the notions of graded formulas and conformal 
vectors. 

Let (S, Y) be a formula and d : S + S an even linear map such that for i E Z2 

s’ = @ s;,, dv=h for VE$. 
&R+ 

We extend d to an even linear map on C[D] @ S by setting 

d(Dkv)=(i+k)v for VES;., k>O. 

Here we write S?. = S,O + Sj. So the space C[D] 8 S is graded by eigenspaces of d: 

C[D] ~3 S = @ (@PI ~3 S),,, 
PEWI 

(8.1) 
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We shall say that the formula (S, Y) is graded by d if 

[d, Y(u,z)]c= (8.2) 

Lemma 8.1. Fur A E (C[D] @ S);. and BE (@[D] @ S),, we hvr 

A,$ E (WI @ S)i+/,-n-1. (8.3) 

Proof. By assumption (8.2) the statement (8.3) holds for A = u and B = v in S. Since 

(DA),B =-nA,_,B 

and 

D(QDl c% 9;. c (a=[Dl @ S)i,l, (8.4) 

we see by induction that (8.3) holds for A E C[D] @C S and B = v E S. Now the lemma 
follows by induction for all B by using (8.4) and (7.3) i.e., 

A,?(DB) = (DA),B - D(A,B). 0 

Note that (8.4) is equivalent to 

[d, D] = D. (8.5) 

Let (S, Y) be a formula and let o and c be two even nonzero elements in S. We 
shall say that cu is a conformal vector in S with a central element L’ if 

(1/2)c Y(o,z)cr, = Dw + $ + 7’ 
Z 

Y(c,z)v = 0, Y(v,z)c=O for all v E S, (8.6) 

and if the formula S is graded by a map d such that 

so = cc, dim ST. <cc for >L E R+, 

Y(u,lz)V=E+$+$+-.- forvEX 
Z 

Clearly (8.6) implies the following: 

(8.7) 

Lemma 8.2. DC[D] @Z c is a two-sided D invuriunt ideal in C[D] g S. 

Lemma 8.3. On C[D] c3 S we huve 00 = D and wl = d. 
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Proof. Let v E S. By assumption (8.7) we have oov = Dv and cc)] v = dv, and for u = D”v, 
k2 1, relation (7.4) implies 

Dk”v Dkdv f kDkv =-+ 
Z 

z2 f.... 

Hence ooDkv=DDkv, and (8.5) implies olDkv =dDkv. 0 

Theorem 8.4. Let (S, Y) be a formula and let o be a conj&mal vector in S with a 
central element c. Then the following three conditions are equivalent: 

(i) S is (.I + ss)-injective. 
(ii) (.I + ss) = DC[D] ~3 c. 

(iii) The elements of the form 

U,V,W - E,,,V,U,W - (8.8) 

u,w + E,,, ~(-l)“+k(Dk/k!)w,+kv, (8.9) 

are in D@[D] $3 c jbr all homogeneous u, v, w E S and m, n E N. 

Proof. (i) j (ii): Let S be (J + ss)-injective and let U = (@[D] ~3 S)J+~~ = Ck>O DkS. 
As usual set Ye = xn>O w,zC”-‘. Then for v E S;~ c U and k > 1 our assumptions 
imply 00 = D and wl(Dkv)~ (3. + k)Dkv. 

The commutator formula for ~0, ot,w2 shows that on U we have a representation 
of the Lie algebra ~12, in standard notation for basis elements 

e = -9, h = -2~14, ,f =oo=D. 

By our assumptions v E Sj$\{ 0) is a highest weight vector of h-weight -2& so @[D]vj. 
is an irreducible Verma module for 2 > 0. Hence 

7-J = C[D]c + 

dim(DkS;.) = dim Sj, for 1, > 0. (8.10) 

Since in C[D] @ S we have ~0003~ - ~300~0 - (~000)s~ = -( 1/2)Dc E (Jacobi), on 
the quotient U we have DC = 0 and hence 

U=Cc@ 
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In particular, U = erc2s U, is graded by eigenspaces of WI: 

UCj=Cc, zJ,= @ DkSj. for I> 0. 
k>O,i.>O,k+A=p 

(8.11) 

Since the two-sided ideal (J + ss) in C[D] @ S is generated by elements of the form 
(8.8) and (8.9), Lemma 8.1 implies that (.I + ss) is graded, i.e., invariant for ol = d, 
and hence 

U,, g (WI @ S),J(J + ss),t. 

It follows from (8.1), (8.10) and (8.11) that 

(8.12) 

dimU/,=dim(C[D]@S),- 1 forp>O, PERI, 

dim U,, =dim(C[D] ~3 S), for p>O, 1( $! N, 

so (8.12) implies dim&I + SS)~= 1 for pu>O, PEN, and dim&I + SS)~~=O for p>O, 
p $ N. Hence DC[D] @ c C(.J + ss) implies that 

(J + ss) = DC[D] @ c. 

(ii) + (iii): This is obvious since by definition (.I + ss) is generated by elements of 
the form (8.8) and (8.9). 

(iii)+(i). Since D@[D]@c is a two-sided ideal in @[D]@S, assumption (iii) clearly 
implies (J + ss) c DC[D] @ c. Hence (i) follows by Proposition 7.8. 0 

Remark 8.5. As a conclusion we could say that in the case of (J + ss)-injective for- 
mulas S with a conformal vector o it is enough to consider a VLA-J-SS U of the form 

U = Cc CB (@[D] @ S’), S’= $ SA, 
i.>O 

defined by a map Y on S’ x S’ 

Y(u,z)v=C J$ U,VES’, ll,VEU, 
ll>O 

Y being extended to U x U by 

Y(P(D)u,z)Q(D)v =P(d/dz)Q(D - d/dz)Y(u,z)u, 

Dc=O and D=D@ 1 on@[D]@S’, 

and check whether it is a vertex Lie algebra, i.e., check whether the elements of the 
form (8.8) and (8.9) are zero for all u,v,w E S’. 

In this case for any given L E @ the quotient -Y-,(U) = +‘“( U)/(c - A) of the uni- 
versal enveloping vertex superalgebra V(U) is a vertex operator superalgebra with a 
conformal vector 0 E SZ C 7$(U). 
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Example 4. The only possible examples of (J+ss)-injective formulas S with a confor- 
ma1 vector w such that S = So = Cc @ Sz are a special case of Example 3: B = & is a 
finite dimensional associative commutative algebra with the identity w and a symmetric 
associative bilinear form such that (0, o) = 1. For U, u E B the formula 

D(u v) 
Y(u,z)v = ~ 

2u . 1: $w)c 
f- ~ 

z 22 + 24 

implies in the corresponding Lie algebra Y(U) the commutation relations 

[u(n), u(m)] = (n - m>(u . v>(n + m) + ; (n ; l) dn+m,O(U, v)c. 

A somewhat different construction of this Lie algebra and the corresponding vertex 
operator algebra is given in [lo]. See also [3] and the references therein. 
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